The Foresight Bias in Monte-Carlo Pricing of Options with Early Exercise: Classification, Calculation & Removal
نویسنده
چکیده
In this paper we investigate the so called foresight bias that may appear in the Monte-Carlo pricing of Bermudan and compound options if the exercise criteria is calculated by the same Monte-Carlo simulation as the exercise values. The standard approach to remove the foresight bias is to use two independent Monte-Carlo simulations: One simulation is used to estimate the exercise criteria (as a function of some state variable), the other is used to calculate the exercise price based on this exercise criteria. We shall call this the numerical removal of the foresight bias. In this paper we give an exact definition of the foresight bias in closed form and show how to apply an analytical correction for the foresight bias. Our numerical results show that the analytical removal of the foresight bias gives similar results as the standard numerical removal of the foresight bias. The analytical correction allows for a simpler coding and faster pricing, compared to a numerical removal of the foresight bias. Our analysis may also be used as an indication of when to neglect the foresight bias removal altogether. While this is sometimes possible, neglecting foresight bias will break the possibility of parallelization of Monte-Carlo simulation and may be inadequate for Bermudan options with many exercise dates (for which the foresight bias may become a Bermudan option on the Monte-Carlo error) or for portfolios of Bermudan options (for which the foresight bias grows faster than the Monte-Carlo error). In addition to an analytical removal of the foresight bias we derive an analytical correction for the suboptimal exercise due to the uncertainty induced by the Monte-Carlo error. The combined correction for foresight bias (biased high) and suboptimal exercise (biased low) removed the systematic bias even for Monte-Carlo simulations with very small number of paths.
منابع مشابه
Foresight Bias and Suboptimality Correction
In this paper we investigate the so called foresight bias that may appear in the Monte-Carlo pricing of Bermudan and compound options if the exercise criteria is calculated by the same Monte-Carlo simulation as the exercise values. The standard approach to remove the foresight bias is to use two independent Monte-Carlo simulations: One simulation is used to estimate the exercise criteria (as a ...
متن کاملApplication of Monte Carlo Simulation in the Assessment of European Call Options
In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...
متن کاملOption pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملPricing American Options when the Underlying Asset follows GARCH processes
As extensions to the Black-Scholes model with constant volatility, option pricing models with time-varying volatility have been suggested within the framework of generalized autoregressive conditional heteroskedasticity (GARCH). However, application of the GARCH option pricing model has been hampered by the lack of simulation techniques able to incorporate early exercise features. In the presen...
متن کاملA Bias Reduction Technique for Monte Carlo Pricing of Early Exercise Options
We present a new method for reducing the bias present in Monte-Carlo estimators of the price of American-style contingent claims. At each exercise opportunity (in a time discretization), we assume there is an unbiased estimator of the claim value at the next exercise opportunity. We approximate the distribution of this statistic using the central limit theorem, and use this to derive an asympto...
متن کامل